

Dinitrogen pentoxide

Dinitrogen pentoxide is the <u>chemical</u> <u>compound</u> with the <u>formula</u> N_2O_5 . Also known as nitrogen pentoxide, N_2O_5 is one of the binary <u>nitrogen oxides</u>, a family of compounds that only contain nitrogen and oxygen. It is an unstable and potentially dangerous oxidizer that once was used as

a <u>reagent</u> when dissolved in <u>chloroform</u> for <u>nitrations</u> but has largely been superseded by NO₂BF₄ (<u>nitronium tetrafluoroborate</u>).

Dinitrogen pentoxide

Names

IUPAC name

Dinitrogen pentaoxide

Other names

Nitric anhydride

Nitronium nitrate

Nitryl nitrate

DNPO

Anhydrous nitric acid

SMILES

SIVIILES	
Properties	
Chemical formula	N_2O_5
Molar mass	108.01 g/mol
Appearance	white solid
<u>Density</u>	1.642 g/cm ³ (18 °C)
Melting point	41 °C (106 °F; 314 K)
Boiling point	47 °C (117 °F; 320 K) sublimes
Solubility in water	reacts to give <u>HNO</u> 3
<u>Solubility</u>	soluble in <u>chloroform</u> negligible in <u>CCl₄</u>

<u>Magnetic</u> <u>susceptibility</u> (χ) <u>Dipole moment</u>	-35.6·10 ⁻⁶ cm ³ /mol (aq) 1.39 D
Structure	
<u>Crystal structure</u>	hexagonal
Molecular shape	planar, C_{2v} (approx. D_{2h}) $N-O-N \approx 180^{\circ}$
Thermochemistry	
Std molar entropy (S ^e 298)	$178.2 \mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1}\mathrm{(s)}$ $355.6 \mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1}\mathrm{(g)}$
Std enthalpy of formation ($\Delta_f H^{\mathbb{Z}}_{298}$)	-43.1 kJ/mol (s) +11.3 kJ/mol (g)
Gibbs free energy	114.1 kJ/mol

Except where otherwise noted, data are given for materials in their <u>standard state</u> (at 25 °C [77 °F], 100 kPa).

Infobox references

N₂O₅ is a rare example of a compound that adopts two structures depending on the conditions: most commonly it is a salt, but under some conditions it is a <u>polar</u> molecule:

$$[\underline{NO_2}^{\pm}][\underline{NO_3}^{-}] = N_2O_5$$

Syntheses and properties

 N_2O_5 was first reported by <u>Deville</u> in 1840, who prepared it by treating AgNO₃ with Cl_2 . [2][3] A recommended laboratory synthesis entails dehydrating <u>nitric acid</u> (HNO₃) with <u>phosphorus(V) oxide</u>:[4]

 $P_4O_{10} + 12 \text{ HNO}_3 \rightarrow 4 \text{ H}_3PO_4 + 6 \text{ N}_2O_5$ In the reverse process, N_2O_5 reacts with water (<u>hydrolyses</u>) to produce nitric acid. Thus, dinitrogen pentoxide is the <u>anhydride</u> of nitric acid:

$$N_2O_5 + H_2O \rightarrow 2 HNO_3$$

 N_2O_5 exists as colourless crystals that sublime slightly above room temperature. The salt eventually decomposes at room temperature into $\underline{NO_2}$ and $\underline{O_2}$. [5]

Structure

<u>Lewis structure</u> of gas-phase N_2O_5

Solid N₂O₅ is a <u>salt</u>, consisting of separated anions and cations. The cation

is the linear <u>nitronium ion</u> NO₂⁺ and the anion is the planar <u>nitrate</u> ion NO₃⁻. Thus, the solid could be called *nitronium nitrate*. Both <u>nitrogen</u> centers have oxidation state +5.

The intact molecule $O_2N-O-NO_2$ exists in the gas phase (obtained by subliming N_2O_5) and when the solid is extracted into nonpolar solvents such as $\underline{CCl_4}$. In the gas phase, the O-N-O angle is 133° and the N-O-N angle is 114°. When gaseous N_2O_5 is cooled rapidly ("quenched"), one can obtain the <u>metastable</u> molecular form,

which exothermically converts to the ionic form above -70 °C.[4]

Reactions and applications

Dinitrogen pentoxide, for example as a solution in <u>chloroform</u>, has been used as a reagent to introduce the NO₂ functionality. This <u>nitration</u> reaction is represented as follows:

 $N_2O_5 + Ar-H \rightarrow HNO_3 + Ar-NO_2$ where Ar represents an <u>arene</u> moiety. For this use, dinitrogen pentoxide has been largely replaced by <u>nitronium</u> $tetrafluoroborate [NO_2]^+[BF_4]^-$. This salt retains the high reactivity of NO_2^+ , but it is thermally stable, decomposing at about $180 \, ^{\circ}\text{C}$ (into $\underline{NO_2F}$ and $\underline{BF_3}$). The reactivity of the NO_2^+ can be further enhanced with strong acids that generate the "super-electrophile" HNO_2^{-2+} .

Dinitrogen pentoxide is relevant to the preparation of explosives. [3][6]

In the <u>atmosphere</u>, dinitrogen pentoxide is an important reservoir of the NO_x species

that are responsible for ozone depletion: its formation provides a <u>null cycle</u> with which NO and NO₂ are temporarily held in an unreactive state.[7] Mixing ratios of several ppbv have been observed in polluted regions of the night-time troposphere.[8] Dinitrogen pentoxide has also been observed in the stratosphere [9] at similar levels, the reservoir formation having been postulated in considering the puzzling observations of a sudden drop in stratospheric NO2 levels above 50 °N, the so-called 'Noxon cliff'.

Variations in N_2O_5 reactivity in aerosols can result in significant losses in tropospheric ozone, <u>hydroxyl radicals</u>, and NOx concentrations.^[10] Two important reactions of N_2O_5 in atmospheric aerosols are: 1) Hydrolysis to form <u>nitric acid</u>^[11] and 2) Reaction with halide ions, particularly Cl^- , to form $ClNO_2$ molecules which may serve as precursors to reactive chlorine atoms in the atmosphere.^{[12][13]}

Hazards

N₂O₅ is a strong oxidizer that forms explosive mixtures with organic

OXOACIDS OF NITROGEN

Dinitrogen pentoxide N2O5

 N_2O_5 is prepared by carefully dehydrating HNO₃ with P_2O_5 at low temperatures. It is a colourless deliquescent solid, which is highly reactive, is a strong oxidizing agent, and is light sensitive. It is the anhydride of HNO₃.

$$N_2O_5 + H_2O \rightarrow 2HNO_3$$

 $N_2O_5 + Na \rightarrow NaNO_3 + NO_2$
 $N_2O_5 + NaCl \rightarrow NaNO_3 + NO_2Cl$
 $N_2O_5 + 3H_2SO_4 \rightarrow H_3O^+ + 2NO_2^+ + 3HSO_4^-$

In the gas phase N_2O_5 decomposes into NO_2 , NO and O_2 . Nitrogen trioxide NO_3 may be formed by treating N_2O_5 with O_3 .

X-ray diffraction shows that solid N_2O_5 is ionic $NO_2^+ NO_3^-$: it should in reality be called nitronium nitrate. It is covalent in solution and in the gas phase, and probably has the structure:

there are more than the complet